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environment. Bronzati et al. use data from
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fossil record and provide evidence for a

single origin of tympanic hearing in the

group of living reptiles.
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Brazil
8Department of Anatomy, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA
9Senckenberg Center for Human Evolution and Palaeoenvironment (SHEP) an der Universit€at Tübingen, Sigwartsraße 10, Tübingen 72076,
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SUMMARY
The invasion of terrestrial ecosystems by tetrapods (c. 375 million years [Ma]) represents one of the major
evolutionary transitions in the history of life on Earth. The success of tetrapods on land is linked to evolu-
tionary novelties. Among these, the evolution of a tympanic ear contributed to mitigating the problem of
an impedance mismatch between the air and the fluid embedding sound-detecting hair cells in the inner
ear.1–3 Pioneering studies advocated that similarities in the tympanic ear of tetrapods could only result
from a single origin of this structure in the group,4,5 an idea later challenged by paleontological and develop-
mental data.4,6–8 Current evidence suggests that this sensory structure evolved independently in amphibians,
mammals, and reptiles,1,6 but it remains uncertain howmany times tympanic hearing originated in crown rep-
tiles.9,10 We combine developmental information with paleontological data to evaluate the evolution of the
tympanic ear in reptiles from two complementary perspectives. Phylogenetically informed ancestral recon-
struction analyses of a taxonomically broad sample of early reptiles point to the presence of a tympanicmem-
brane as the ancestral condition of the crown group. Consistently, comparative analyses using embryos of
lizards and crocodylians reveal similarities, including the formation of the tympanicmembranewithin the sec-
ond pharyngeal arch, which has been previously reported for birds. Therefore, both our developmental and
paleontological data suggest a single origin for the tympanic middle ear in the group, challenging the current
paradigm of multiple acquisitions of tympanic hearing in living reptiles.
RESULTS AND DISCUSSION

The tympanic membrane in early crown reptiles
Crown reptiles compose an incredibly speciose group, encom-

passing about 20,000 species of birds, crocodylians, lizards,

snakes, the tuatara, and turtles. This clade originated around

20–50 Ma after the beginning of the water-to-land transition in

tetrapods and, along its evolution, includes forms such as the

iconic non-avian dinosaurs, flying pterosaurs, and marine rep-

tiles. Data from the rich reptilian fossil record might suggest

that the tympanic middle ear is a derived feature that appeared

more than once within the crown group (6), a paradigm that re-

mains unchallenged until now.11 Here, using the presence of a
Current Biology 34, 1–7, Novem
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tympanic membrane as a proxy for the presence of a tympanic

middle ear in fossil taxa, we reassess the evolution of tympanic

hearing in the reptilian fossil record (Figure 1) in the light of strik-

ing recent discoveries11 and reinterpretations of key reptilian

fossils.12,13

Soft tissues are rarely preserved in the fossil record, and so far,

no evidence of a preserved tympanic membrane in Paleozoic

and early Mesozoic reptiles has been reported—the tympanic

membrane is, however, recognizable in Cretaceous lizards pre-

served in amber.14 Therefore, the presence of the tympanic

membrane (and hence the presence of a tympanic middle ear)

in the origin of crown reptiles can only be inferred based on its

osteological correlates (sensu Witmer15) on the morphology of
ber 18, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Early evolution of tympanic hearing in stem and crown reptiles by ancestral state reconstruction on a timescaled phylogeny with

the inferred morphology of the otic region for selected taxa, showing an estimated probability of >95% for the presence of a tympanic ear at

the node of crown reptiles

(A) One of the six phylogenetic hypotheses used in the analyses of ancestral trait reconstructions (STAR Methods), with pie charts indicating the probability for

each possible state (legend at bottom right) for the nodes and tips of the tree.

(B–E) (B) Schematic drawing of the skull of Araeoscelis, (C) photograph (left) and schematic drawing (right) of the skull of the specimen PVSJ 698 of Taytalura

alcoberi, (D) photograph (top) and schematic drawing (bottom) of the skull of the specimen SMNS 16980 of Proganochelys quenstedti, and (E) photograph (top)

and schematic drawing (bottom) of the skull of the specimenBPI-1-2576 ofProlacerta broomi. The position of the tympanicmembrane in (B)–(D) was inferred from

comparative morphological analyses of extant and extinct reptiles. The term ‘‘crown reptiles’’ is used to refer to the minimal clade, including all living lineages of

reptiles.

Ma, million years; qj, quadratojugal; qu, quadrate; sq, squamosal; tm, tympanic membrane. For institutional abbreviations, see data and code availability.

See also Figures S3–S8.
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the otic region of the skull. Unambiguous osteological correlates

of the tympanic membrane (in the sense that all living animals

possessing this structure have a tympanic membrane associ-

ated with it) are, however, difficult to trace in the fossil record

of early stem and crown reptiles, given the disparate morphology

of their otic region compared with that of living reptiles

(Figures S1 and S2). The oldest evidence of an unambiguous

osteological correlate in crown reptiles is the presence of a tym-

panic conch and crest (a recessed surface in the lateral surface

of the quadrate delimited by a lateral expansion of the anterior

margin of the bone16) in the lepidosauromorph Megachirella

wachtleri from the Middle Triassic (c. 240 Ma) of Europe.12 The

evolution of the tympanic crest in lepidosauromorphs is likely

linked to the reorganization of the otic region of the skull due to

the loss of a ventral process of the squamosal and a dorsal pro-

cess of the quadratojugal contacting the anterolateral margin of
2 Current Biology 34, 1–7, November 18, 2024
the quadrate. Differently, in stem taxa of all the three main living

lineages of reptiles, the anterior margin of the quadrate is

bordered by either one or both processes of the quadratojugal

and squamosal bones (Figure 1).

Based on our morphological analyses of fossil reptiles and

comparisons with living forms (STAR Methods), we infer that a

tympanicmembranewasmajorly anchored on the lateral surface

of the quadrate, at the contact with the ventral ramus of the

squamosal and/or the dorsal ramus of the quadratojugal, in

crown reptiles (Figure 1). This interpretation is congruent with a

morphological shift of the otic region observed in these taxa.

Early crown reptiles exhibit a concave posterior margin of the

quadrate shaft that is not completely overlapped by either the

squamosal and/or by the quadratojugal and possess a slender

columella that is freed from the basicranium. This combination

of traits is only observed in living reptiles with tympanic ears or



Figure 2. In situ hybridization ofHoxa2 expression in embryos of the

lizard Tropidurus catalanensis and the crocodylian Caiman yacare

(A) Whole-mount in situ hybridization of Hoxa2 expression in the head of an

18-dpo embryo of C. yacare.

(B) Close-up of the region within the rectangle in (A).

(C) Whole-mount in situ hybridization of Hoxa2 expression in the head of a

23-dpo embryo of T. catalanensis.

(D) Close-up of the region within the rectangle in (C).

tm, tympanic membrane.

See also Figure S9.
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in lepidosaurs for which the lack of a tympanic membrane repre-

sents secondary losses within their lineage—as exemplified by

the limbless lizards of the genus Aprasia.17 Differently, a

columnar quadrate shaft that is overlapped by either the squa-

mosal and/or the quadratojugal is observed in members of the

stem lineage18—excluding ‘‘parareptiles’’ that developed a tym-

panic ear.19 Whereas the change in the morphology of the pos-

terior margin of the quadrate created an aperture on the otic re-

gion of the skull, providing an anchorage point for the attachment

of the tympanicmembrane anteriorly and space for the columella

(or extra columella) to contact the tympanic membrane, the loss

of bracing between the columella with the basicranium allowed

this ossicle, freed in the tympanic cavity, to participate in the

transmission of the acoustic signal from the tympanicmembrane

to the inner ear.1,3,6 This morphological shift in early crown rep-

tiles is congruent with that reported for other amniote lineages

where a tympanic membrane also evolved, including synapsids

(the mammal lineage of amniotes) and parareptiles.19

We phylogenetically reconstructed the evolution of the tym-

panic membrane in stem and crown reptiles using the most

extensive sample of fossil and extant specimens to date (STAR

Methods). The results of our stochastic reconstructions (Fig-

ures 1 and S3–S8) estimated a probability of more than 95%

that a tympanic membrane, and hence a tympanic ear, was pre-

sent at the origin of crown reptiles, between 300 and 250 mya

(see supplemental information for more details). Additional ana-

lyses using alternative topologies (Figures S3–S8) support this

result, regardless of recent phylogenetic controversies in
respect of early crown reptiles.11–13,20–24 The recovered ances-

tral morphology, with a tympanic membrane anteriorly attached

to the junction of the quadrate with the quadratojugal and/or the

squamosal, can be confidently inferred for taxa such as the

recently discovered lepidosauromorph Taytalura alcoberi from

the Late Triassic of Argentina, which corresponds to the sister

group of all other lepidosauromorphs11,12: Sophineta cracovien-

sis from the Middle Triassic of Poland, a sister taxon of all squa-

mates14; the stem-archosaur Prolacerta broomi from the Middle

Triassic of South Africa25; and the stem turtle Proganochelys

quenstedti26 from the Late Triassic of Laurasia (Figure 1).

Embryonic development of the reptilian tympanic
membrane
We used in situ hybridizations, diffusible iodine-based contrast-

enhanced computed tomography (diceCT) scans, and traditional

histology to investigate the embryonic development of the tym-

panic middle ear in squamates and crocodylians, with a focus

on the tympanic membrane. Thus, we fill a gap in the currently

available data for the development of the tympanic middle ear

in reptiles, which was previously mostly based on information

from chicken embryos.7,8 We analyzed the spatial development

of the tympanicmembrane in relation to the pharyngeal arches in

the lizard Tropidurus catalanensis and the crocodylian Caiman

yacare (Figure 2), biological representatives of Lepidosauromor-

pha and Archelosauria, respectively, the two main crown

reptilian lineages. For that, we used whole-mount in situ hybrid-

izations to detect the expression of Hoxa2 (a marker for the sec-

ond pharyngeal arch) in 23-days-post-oviposition (dpo) embryos

of Tropidurus catalanensis and in 18 dpo embryos of C. yacare

(Figures 2 and S9). In whole-mount hybridization of C. yacare

embryos, labeling is strongest at the neck region caudal to the

lower jaw and at the tympanic membrane (Figures 2A and 2B).

Hoxa2 labeling is absent at the posterior portion of the neck

ventral to the otic region. It is also absent in both lower and upper

jaws (although a small amount of expression was detected on

the epidermis adjacent to the ventral limit of the eyes), which

derive, respectively, from the frontonasal prominence and first

pharyngeal arch (Figures 2A and 2B). Whole-mount hybridization

of T. calalanensis (Figures 2 and S9) shows that Hoxa2 is absent

in the distal regions of the lower and upper jaws but becomes

progressively stronger near the otic region (Figures 2C and

2D). Hoxa2 labeling is also absent in the posterior region of the

neck ventral to the otic region. In this scenario, the most parsi-

monious explanation for the presence of Hoxa2 in the otic region

is that the tympanic membrane arises from the second pharyn-

geal arch, similarly to what has been reported for birds and in

contrast with the condition in mammals in which the tympanic

membrane is a derivative of the first pharyngeal arch.8 Our

data thus corroborate the independent developmental origins

of the tympanic membrane in mammals and reptiles (including

birds) and also indicate a topological equivalence of the mem-

brane of living reptiles regarding its spatial organization within

the pharyngeal arches early in ontogeny.

A paleo-evo-devo perspective on the origin of the
tympanic ear in crown reptiles
Our developmental and paleontological data introduce a new

scenario to the evolution of tympanic hearing in the group,
Current Biology 34, 1–7, November 18, 2024 3



Figure 3. Embryonic development of the

tympanic ear in the lizard Tropidurus catala-

nensis and the crocodylian Caiman yacare

(A) 3D reconstruction of the elements of the middle

and inner ear (in posterolateral view) of a 31-dpo

(stage 38) embryo of T. catalanensis based on di-

ceCT data.

(B) Histological sections in coronal plane of the right

side of the skull of a 31-dpo (stage 38) embryo of

T. catalanensis.

(C) 3D reconstructions of the elements of the middle

and inner ear (in anteromedial view) of a 32-dpo

embryo of C. yacare based on diceCT data.

(D) Histological sections in coronal plane of the right

side of the skull of a 32-dpo embryo of C. yacare.

asc, anterior semicircular canal; coc, cochleae; col,

columella; el, earlid; fpp, first pharyngeal pouch; lsc,

lateral semicircular canal; psc, posterior semi-

circular canal; tm, tympanic membrane; ves, vesti-

bule.
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including all lineages of living reptilians. From the perspective of

developmental biology, our data for lizards and caimans, which,

together with birds, bracket all the crown reptilian lineages ac-

cording to most recent phylogenetic hypotheses based on

morphological and molecular data,11–13,20–23 indicate topologi-

cal equivalence regarding the development of the tympanic

membrane within the second pharyngeal arch. The homology

of other components of the tympanic middle ear, such as the

columella and the tympanic cavity (Figure 3), across all tetrapod

lineages is well established.1,5,6 However, the exact contribution

of the germ layers to the formation of the tympanic membrane in

reptiles remains unknown.1 From a paleontological standpoint,

the fossils of early crown reptiles show similarities in the otic re-

gion that are compatible with the presence of a tympanic mem-

brane. Assuming that this similar morphology is not homologous

among crown reptiles and that it does not represent the ances-

tral condition of the group as supported by our analyses (Figure 1)

would require several ad hoc explanations implyingmultiple evo-

lution of the tympanic ear in the different lineages. Thus, when

combined, our results indicate a single origin of tympanic hearing

at the origin of the reptilian crown group (Figure 1). An ostensible

singular origin for the tympanic middle ear in reptiles raises

further questions regarding the evolution of hearing in reptiles,

such as the timing of origin of traits enhancing the perception

and localization of airborne sounds, including internally coupled

middle ears and the development of an external acoustic

meatus,3 and also the timing of loss of a tympanic membrane

and reorganization of middle ear components in several lepido-

sauromorph lineages that do not possess tympanic hearing,

such as the tuatara, amphisbaenians, snakes, and chameleons,

among others.27
4 Current Biology 34, 1–7, November 18, 2024
The new information for reptiles that we

present here dialogs with the scenario of

the evolution of tympanic hearing in amni-

otes, the group including all living reptiles,

mammals, and their extinct relatives.

Although it has been demonstrated that

different pharyngeal arches contribute to
the development of the tympanic membrane in mammals and

reptiles,8 at least two features of the tympanic ear are homolo-

gous in these two groups of amniotes: the tympanic cavity

formed by the expansion of the first pharyngeal pouch and the

columella (Figure 3). Taken together, the present data for the

evolution of the tympanic ear in amniotes highlight that, for struc-

tures composed of multiple parts, such as the tympanic middle

ear, whereas some of the parts might be homologous in different

groups, as is the case for the columella and for the tympanic cav-

ity of mammals and reptiles, other parts may not, as is the case

for the tympanic membrane (see also Tucker1). This demon-

strates that similar developmental routes can lead to the appear-

ance of non-ancestrally related but anatomically akin complex

structures such as the tympanic ear in different lineages.

In light of the results presented in this study and based on the

current literature on the evolution of the tympanic ear, the most

likely scenario for the evolution of tympanic hearing in amniotes

is that this feature appeared at least three times, independently,

in mammals, parareptiles (but see Müller and Tsuji19), and crown

reptiles (see also Tucker,1 Lombard and Bolt,4 Gaupp,5 Clack

et al.,6 Kitazawa et al.,7 Sobral et al.,9 Müller et al.,10 and

Clack28). Despite recent phylogenetic studies pointing out the af-

finity of some ‘‘parareptilian’’ lineages to the reptilian crown

group,29 a single origin of the tympanic ear in a clade including

parareptiles and crown reptiles can be so far discarded, as the

fossil record shows that the immediate sister groups of the line-

ages in these groups with a tympanic ear lacked this structure

(Figure 1; see also Müller and Tsuji19). Our analyses indicate

that the tympanic ear of crown reptiles might have already orig-

inated in the Paleozoic, but the known fossil record of crown rep-

tiles extends back only as far as the first stages of the
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Mesozoic.20 So far, the oldest evidence for the presence of a true

tympanic ear in the fossil record (based on the analysis of oste-

ological correlates) is for Paleozoic parareptiles from the Late

Carboniferous of the USA30 and Middle Permian (c. 270–250

Ma) of Russia.19 Regardless of the timing of the origin of the tym-

panic ear in crown reptiles, we suggest that the evolution of a

tympanic ear represented one of the evolutionary novelties that

is associated with the successful radiation of this group early

in the Mesozoic, in the aftermath of the greatest mass extinction

of all time, the Permo-Triassic event. As this sensory structure

enables a better perception of the environment and enhances

the ability of animals to detect predators and capture prey,1–3

it likely provided an advantage for animals’ survival during a

period marked by drastic environmental changes.
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Youngina capensis (Reptilia, Diapsida): new insights from high-resolution

CT scanning of the holotype. Palaeontol. Electron. 13, 19A.

55. Rapp Py-Daniel, T.R., Kennedy Soares De-Lima, A.K.S., Campos Lima,

F.C., Pic-Taylor, A., Rodrigues Pires Junior, O.R., and Sebben, A.

(2017). A staging table of post-ovipositional development for the South

American Collared Lizard Tropidurus torquatus (Squamata:

Tropiduridae). Anat. Rec. 300, 277–290.

56. Iungman, J., Piña, C.I., and Siroski, P. (2008). Embryological development

of Caiman latirostris (Crocodylia: Alligatoridae). Genesis 46, 401–417.

57. Modesto, S.P., and Anderson, J.S. (2004). The phylogenetic definition of

Reptilia. Syst. Biol. 53, 815–821.

58. de Queiroz, K., Cantino, P., and Gauthier, J. (2020). Phylonyms: A

Companion to the Phylocode (CRC Press).

59. Dong, L., Matsumoto, R., Kusuhashi, N., Wang, Y., Wang, Y., and Evans,

S.E. (2020). A new choristodere (Reptilia: Choristodera) from an Aptian–

Albian coal deposit in China. J. Syst. Palaeontol. 18, 1223–1242.

60. Acloque, H., Wilkinson, D.G., and Nieto, M.A. (2008). In situ hybridization

analysis of chick embryos in whole-mount and tissue sections. Methods

Cell Biol. 87, 169–185.

61. Gignac, P.M., Kley, N.J., Clarke, J.A., Colbert, M.W., Morhardt, A.C.,

Cerio, D., Cost, I.N., Cox, P.G., Daza, J.D., Early, C.M., et al. (2016).

Diffusible iodine-based contrast-enhanced computed tomography

(diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of meta-

zoan soft tissues. J. Anat. 228, 889–909.

62. Bapst, D.W. (2013). A stochastic rate-calibrated method for time-scaling

phylogenies of fossil taxa. Methods Ecol. Evol. 4, 724–733.

63. Stadler, T. (2010). Sampling-through-time in birth–death trees. J. Theor.

Biol. 267, 396–404.

64. Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D.L.,

and Rasnitsyn, A.P. (2012). A total-evidence approach to dating with
fossils, applied to the early radiation of the hymenoptera. Syst. Biol. 61,

973–999.

65. Heath, T.A., Huelsenbeck, J.P., and Stadler, T. (2014). The fossilized birth–

death process for coherent calibration of divergence-time estimates.

Proc. Natl. Acad. Sci. USA 111, E2957–E2966.

66. Zhang, C., Stadler, T., Klopfstein, S., Heath, T.A., and Ronquist, F. (2016).

Total-evidence dating under the fossilized birth–death process. Syst. Biol.

65, 228–249.

67. Bapst, D.W. (2012). paleotree: an R package for paleontological and

phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807.

68. R Core Team (2022). R: A Language and Environment for Statistical

Computing (R Foundation for Statistical Computing).

69. Lloyd, G.T., Bapst, D.W., Friedman, M., and Davis, K.E. (2016).

Probabilistic divergence time estimation without branch lengths: dating

the origins of dinosaurs, avian flight and crown birds. Biol. Lett. 12,

20160609.

70. Bapst, D.W., and Hopkins, M.J. (2017). Comparing cal3 and other a pos-

teriori time-scaling approaches in a case study with the pterocephaliid tri-

lobites. Paleobiology 43, 49–67.

71. Stubbs, T.L., Pierce, S.E., Elsler, A., Anderson, P.S.L., Rayfield, E.J., and

Benton, M.J. (2021). Ecological opportunity and the rise and fall of croco-

dylomorph evolutionary innovation. Proc. Biol. Sci. 288, 20210069.

72. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A.,
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Avizo Lite 9.2.0 Thermo Fisher Scientific N/A
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R package tibble V 3.1.6 https://github.com/tidyverse/tibble N/A
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Embryos of Tropidurus catalanensis

Embryos of the lizardTropidurus catalanensiswereobtained fromeggsof gravid females captured at themunicipality of São Simão, São

Paulo, Brazil (21� 280 4400 S 47� 330 0300 W). The females were transported in cloth bags and maintained in the animal facility ‘Biot�erio de

Vertebrados Silvestres’ of the FFCLRP (see supplemental information for institutional abbreviations) at the University of São Paulo. An-

imal capture andmaintenance were conducted according to the Brazilian legislation, with authorization from the Brazilian ‘Minist�erio do

Meio Ambiente’ – SISBIO (Sistema de Autorização e Informação em Biodiversidade - Permit Number: 70079-1), and approval from the

‘Comitê de Ética no uso deAnimais’ (EthicCommittee on theUseof animals inResearch) of FFCLRPat theUniversity of São Paulo. After

oviposition, eggswere incubated at 30oC and embryoswere extracted following previously documenteddevelopmental stages55: stage

35 (initial formation of the tympanic membrane – Figure 2) to stage 38 (tympanic membrane fully formed – Figure 3).

Embryos of Caiman yacare

Embryos of Caiman yacare were obtained in collaboration with the caiman farm ‘Caimasul’, in the municipality of Corumbá (MS –

Brazil). Due to the lack of a developmental table establishing the embryonic stages of Caiman yacare, we estimated the day of em-

bryonic development based on comparisons with data published for the closely related speciesCaiman latirostris.56 Eggs were incu-

bated at 36oC. Embryos of Caiman yacare from 18 days (initial formation of the tympanic membrane – Figure 2) to 32 days (tympanic

membrane fully formed – Figure 3) were collected.

METHOD DETAILS

Nomenclature of reptilian groups
The term ‘‘crown reptiles’’ is here used to refer to all members, extant and extinct, of the minimal clade including the most recent

common ancestor of living turtles, squamates, rhynchocephalians, birds, and crocodylians. Additionally, the term ‘reptiles’ is here
e3 Current Biology 34, 1–7.e1–e5, November 18, 2024
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used to refer to all taxa belonging to the most inclusive clade containing crown reptiles but not mammals (see also Simões et al. and

Modesto and Anderson20,57). Note that under the phylogenetic hypotheses used in this work (see below), our informal definition of

‘‘crown reptiles’’ would be equivalent to that of Reptilia presented in the Phylonyms.58 However, no total clade definition for Reptilia

has been proposed so far. Hence, taxa traditionally considered as reptiles (or sauropsids20), such as some ‘‘parareptiles’’ would not

be compose Reptilia. As pointed out in a recent study,20 the definitions for the more inclusive clades of reptiles still require a sub-

stantial revision.

Phylogenetic framework
Composite phylogenies combining trees from current literature were used as the framework for ancestral state reconstruction ana-

lyses of the presence/absence of a tympanic membrane (see further details below). The core of the topologies corresponds to phylo-

genetic hypotheses presented in two recent studies on the early evolution of lepidosauromorphs,11,13 which in turn used a modified

version of one of the most complete phylogenetic data matrices built for early reptiles so far.12 To maximize information on earlier

nodes of reptilian subgroups, we added taxa from poorly sampled groups following recent phylogenetic hypotheses proposed for

each of them, namely: Archosauromorpha,24 ‘‘marine reptiles’’ (the least inclusive clade including Ichthyopterygia and Sauroptery-

gia,48 and Choristodera.59

To accommodate major uncertainties in early reptilian phylogeny, we performed the analyses using six alternative topologies. Two

of these correspond to the original results of Ford et al.13 and Martı́nez et al.11 with the additional taxa incorporated as described

above. These topologies accommodate the uncertainties regarding the position of the gliding kuehneosaurids, with their position

either as archosauromorphs11 or as lepidosauromorphs.13 Additionally, as both original topologies have turtles depicted as the sister

group of ‘Lepidosauromorpha + Archosauromorpha’, two alternative phylogenetic arrangements for each of these trees were also

tested, one with turtles as the sister group of Archosauromorpha and the other with turtles as the sister group of

Lepidosauromorpha.20,22,23

Defining the presence/absence of the tympanic membrane
In the lack of unambiguous correlates of the tympanicmembrane (seeMain Text), the presence of a tympanicmembranewas inferred

based on a combination of traits related to the otic region of the skull using two different approaches. In the first approach, a tympanic

membrane was considered present for taxa exhibiting the character state ‘0’ for the characters A, B, and C (see below). To maximize

the number of taxa for which the presence absence of a tympanic membrane could be scored, a second analyses was conducted

with the presence of a tympanicmembrane being inferred for those taxa scored with character state ‘0’ for characters A and B below.

The exclusion of character C is due to the fact that the columella is more rarely preserved and usually only briefly described.

Character A

Posterior Margin of the quadrate shaft: 0 – concave; 1 straight/convex (Figure S1). This character captures the variation on the pos-

terior margin of the quadrate that is observed in animals with tympanic and atympanic ears. Stem-saurians, which do not have an

aperture in the otic region - and hence no tympanic membrane - have a quadrate with either a straight (e.g., Araeoscelis, Coerulo-

sauravus elivensis) or slightly convex (e.g., Youngina capensis) posterior margin.31,54 A columnar quadrate is also observed in living

reptiles without a tympanic middle ear, such as chameleons and snakes (Table S1). On the other hand, the evolution of a tympanic

middle ear is associated with the opening in the otic region of the skull, which is typically related to a quadrate with a concave pos-

terior margin of the quadrate, establishing a space for the columella (or extracolumella) to attach to the tympanic membrane.

Character B

Quadrate shaft: 0 – lateral and posterior surface exposed; 1 – lateral surface overlapped by either the squamosal or quadratojugal (Fig-

ure S1). In living reptiles (Figure S2), excluding turtles, the anterior margin of the tympanic membrane is attached to the quadrate,

either on the medial (e.g., some birds) or on the lateral (e.g., lizards and crocodylians) margin of the quadrate. In lizards and croco-

dylians, the lateral surface of the quadrate is completely exposed, in a way that the tympanic membrane covers the entire lateral

flange of the bone. In extinct taxa, the ventral ramus of the squamosal and/or the dorsal ramus of the quadratojugal overlap parts

of the lateral flange of the quadrate in taxa such as the early lepidosauromorph Sophineta cracoviensis (Figure S1) In this configura-

tion, a tympanic membrane, when present, would only cover the lateral flange of the quadrate posterior to the region where the bone

overlaps the quadratojugal and/or the squamosal. On the other hand, in stem-saurians such as Petrolacosaurus kansensis and

Youngina capensis54 the quadrate shaft is overlapped by either the squamosal and/or the quadratojugal.

Character C

Stapes, contact between basicranium and quadrate: 0 – absent; 1 – present. In stem reptiles such as Youngina capensis, the stapes is

a massive bone that serves as a bracing structure between the braincase and the quadrate.31,54 Differently, the stapes of crown rep-

tiles is a slender bone that does not function as support for the basicranium.

In-situ hybridization
In-situ hybridizations were performed in embryos at initial stages of the formation of the tympanic membrane: stage 35 of Tropidurus

catalanensis and 15-18 dpo embryos of Caiman yacare. We designed primers for PCR amplification of Tropidurus catalanensis and

Caiman yacare HOXA2DNA templates used for synthesis of in situ hybridization RNA probes based on Genbank sequences ofAnolis

carolinensis-Pogona vitticeps and Alligator mississippiensis-Alligator sinensis, respectively. Products with the expected length

(�0.5 kb) were amplified from genomic DNA and cloned into pGEM-T vector (Promega), confirmed by sequencing, and used as
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templates for in vitro transcription with digoxigenin-labelled UTP (Roche). Whole embryo heads (n=5 for embryos of T. catalanensis in

stage 35 and n=5 for 15-18 dpo C. yacare embryos) were fixed in 4% PFA, dissected from extra embryonic membranes and dehy-

drated in methanol prior to storage at -20�C. Before rehydration, embryos were decapitated with a scissor and the heads were per-

meabilized with 10 mg/ml Proteinase K for 30 min and in situ hybridized at 67-69 �C, following procedures previously described for

chicken whole-mount embryos.60 The washes and buffer switching steps were extended to 30 min each to enable efficient diffusion

into tissue. The reaction was developed with an NBT/BCIP mix.

Histological sections and diceCT
Histological sectioning and diffusible iodine-based contrast-enhanced computed tomography (diceCT61; Figure 3) were imple-

mented using embryos at different stages that encompass the complete development of the tympanic membrane, from its initial for-

mation (stage 35 [21-23 dpo] for Tropidurus catalanensis and 15-18 dpo for Caiman yacare embryos) until it was almost fully formed

(stage 38 [30-38 dpo] for Tropidurus catalanensis and 32 dpo for Caiman yacare), which corresponds to a morphology mostly similar

to that observed in the adults. For the processing of histological sections and computed tomography, embryos were fixed using 4%

paraformaldehyde (PFA) in PBS. Early-stage embryos were fixed overnight at 4�C, whereas embryos at later stages were fixed over-

night at room temperature. Afterwards, embryoswere stored in 70%ethanol (EtOH) solution. For histological sections, embryoswere

dehydrated in an ethanol-rising series, cleared with xylol, and then impregnated and embedded in paraffin. For the diceCT proced-

ure, embryos were stained with Lugol solution (1%w/v). Embryosweremaintained in the Lugol solution (1%) for 1-2 hours. The scans

were conducted using a Nanotom Scanmachine—GE Sensing & Inspection Technologies GmbH (Wunstorf, Germany) at the Centro

para Documentação da Biodiversidade, Universidade de São Paulo (Ribeirão Preto, Brazil). We processed the 3D models of the

developing ear using the software Amira (version 5.3.3, Visage Imaging, Berlin, Germany).

QUANTIFICATION AND STATISTICAL ANALYSIS

Time calibration
To account for eventual effects of differences in branch lengths, we time-calibrated these six initial topologies using two different

approaches: the probabilistic ‘a posteriori’ time-scaling method cal3,62 and a Bayesian tip-dating analysis using a fossilized birth–

death (FBD) model.63–66 Temporal information for each taxon (i.e., geological age ranges) was obtained from the literature (data

and code availability). For the cal3method, speciation and extinction rates (assumed to be the same) were estimated using the func-

tionRate2sProb67 in R version 4.1.068 and dividing themby the interval length, whereas the sampling rate was randomly drawn from a

uniform distribution of rates previously estimated for tetrapods.69,70 Time calibration was performed using the R package paleotree67

scripts made available by Stubbs et al.71 resulting in 100 trees for each initial topology to account for temporal uncertainty. For the

FBD analyses, we used the R package paleotree67 to create an ‘‘empty’’ character matrix, with the initial topologies considered as

topological constraints, which was used as aMrBayes (version 3.2.672) command file. Uniform priors were placed on taxon ages (us-

ing taxon age ranges) and on the root age (with maximum and minimum ages set to 315.2 and 307 Ma, respectively). For each initial

topology, we performed two independent Markov Chain Monte Carlo (MCMC) runs, with four chains each, for 20,000,000 genera-

tions. Convergence was assessed using PSRF (potential scale reduction factor) and average standard deviation of split frequency

values (with values approaching 1.0 and below 0.01, respectively). After the runs converged, 30% of sampled trees were discarded

as burn-in. As for cal3, 100 treeswere randomly selected for each initial topology and used in downstream analyses, resulting in 1,200

trees in total. AIC scores (data and code availability) indicate that trees calibrated with the fossilized birth–death (FBD) had the stron-

gest support in 10 out of 12 different combinations of reconstructions (i.e., six initial topologies and two morphological characters).

Inference of the ancestral morphology
We used the 1,200 time-calibrated trees to run stochastic ancestral state reconstruction analyses using the R functionmake.simmap

from the package phytools,73 which fits a continuous-time reversible Markov model to simulate character history. Given that the

morphology was unknown for certain taxa (i.e., tips with missing data), we provided specified prior probabilities on the tip states

(following Revell74), based on the number of states for each character. We estimated the ancestral states of these three characters,

which provided us robust evidence for the presence or absence of a tympanic middle ear at the base of the crown group. To do that,

we used two different models of evolution: an all-rates-different model (ARD model), which assumes that different states evolved

freely and had different rates parameters, and an equal rates model (ER model), which assumes a single rate for all branches in

the topology. We ran 100 stochastic simulations for each tree. Results from all 100 trees of each initial topology and each time-cali-

bration method were summarized using the R function describe.simmap.73 For each of the two approaches and six initial topologies,

relative support for the evolutionary models and time-calibration methods was assessed using AIC (Akaike’s information criterion75)

scores to determine the best fit. AIC scores (data and code availability) indicate that the ARDmodel was preferred in all of the different

combinations of reconstructions (i.e., six initial topologies and two morphological characters).
e5 Current Biology 34, 1–7.e1–e5, November 18, 2024


	CURBIO20642_proof.pdf
	Deep-time origin of tympanic hearing in crown reptiles
	Results and discussion
	The tympanic membrane in early crown reptiles
	Embryonic development of the reptilian tympanic membrane
	A paleo-evo-devo perspective on the origin of the tympanic ear in crown reptiles

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and subject details
	Embryos of Tropidurus catalanensis
	Embryos of Caiman yacare

	Method details
	Nomenclature of reptilian groups
	Phylogenetic framework
	Defining the presence/absence of the tympanic membrane
	Character A
	Character B
	Character C

	In-situ hybridization
	Histological sections and diceCT

	Quantification and statistical analysis
	Time calibration
	Inference of the ancestral morphology





